Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Viruses ; 15(5)2023 05 07.
Article in English | MEDLINE | ID: covidwho-20242796

ABSTRACT

Avian coronaviruses (ACoV) have been shown to be highly prevalent in wild bird populations. More work on avian coronavirus detection and diversity estimation is needed for the breeding territories of migrating birds, where the high diversity and high prevalence of Orthomyxoviridae and Paramyxoviridae have already been shown in wild birds. In order to detect ACoV RNA, we conducted PCR diagnostics of cloacal swab samples from birds, which we monitored during avian influenza A virus surveillance activities. Samples from two distant Asian regions of Russia (Sakhalin region and Novosibirsk region) were tested. Amplified fragments of the RNA-dependent RNA-polymerase (RdRp) of positive samples were partially sequenced to determine the species of Coronaviridae represented. The study revealed a high presence of ACoV among wild birds in Russia. Moreover, there was a high presence of birds co-infected with avian coronavirus, avian influenza virus, and avian paramyxovirus. We found one case of triple co-infection in a Northern Pintail (Anas acuta). Phylogenetic analysis revealed the circulation of a Gammacoronavirus species. A Deltacoronavirus species was not detected, which supports the data regarding the low prevalence of deltacoronaviruses among surveyed bird species.


Subject(s)
Avulavirus , Gammacoronavirus , Influenza A virus , Influenza in Birds , Animals , Ducks , Gammacoronavirus/genetics , Influenza in Birds/epidemiology , Avulavirus/genetics , Siberia/epidemiology , Phylogeny , Birds , Animals, Wild , Influenza A virus/genetics , RNA
2.
J Gen Virol ; 104(2)2023 02.
Article in English | MEDLINE | ID: covidwho-2256218

ABSTRACT

The COVID-19 pandemic is the first to have emerged when Next Generation Sequencing was readily available and it has played the major role in following evolution of the causative agent, Severe Acute Respiratory Syndrome Coronavirus 2. Response to the pandemic was greatly facilitated though use of existing influenza surveillance networks: World Health Organization (WHO) Global Influenza Surveillance and Response System (GISRS), focussing largely on human influenza, and the OFFLU network of expertise on avian influenza established by the Food and Agricultural Organization of the United Nations (FAO) and the World Organization for Animal Health (WOAH). Data collection/deposition platforms associated with these networks, notably WHO's FluNet and the Global Initiative on Sharing All Influenza Data (GISAID) were/are being used intensely. Measures introduced to combat COVID-19 resulted in greatly decreased circulation of human seasonal influenza viruses for approximately 2 years, but circulation continued in the animal sector with an upsurge in the spread of highly pathogenic avian influenza subtype H5N1 with large numbers of wild bird deaths, culling of many poultry flocks and sporadic spill over into mammalian species, including humans, thereby increasing pandemic risk potential. While there are proposals/implementations to extend use of GISRS and GISAID to other infectious disease agents (e.g. Respiratory Syncytial Virus and Monkeypox), there is need to ensure that influenza surveillance is maintained and improved in both human and animal sectors in a sustainable manner to be truly prepared (early detection) for the next influenza pandemic.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Influenza, Human , Orthomyxoviridae , Animals , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza in Birds/epidemiology , Pandemics , COVID-19/epidemiology , Mammals
5.
Science ; 379(6630): 316-317, 2023 01 27.
Article in English | MEDLINE | ID: covidwho-2242397

ABSTRACT

Big outbreak at a Spanish farm reignites fears of an H5N1 influenza pandemic.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Mink , Animals , Humans , Birds , Disease Outbreaks , Influenza in Birds/epidemiology , Mink/virology , Spain
6.
Microbiol Spectr ; 11(1): e0420722, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2241633

ABSTRACT

Backyard farming with limited biosecurity creates a massive potential for zoonotic spillover. Cambodia, a developing nation in Southeast Asia, is a hub for emerging and endemic infectious diseases. Due to pandemic-induced job losses in the tourism sector, rumors suggest that many former Cambodian tour guides have turned to backyard farming as a source of income and food security. A cross-sectional study including 331 tour guides and 69 poultry farmers in Cambodia before and during the novel coronavirus disease 2019 (COVID-19) pandemic was conducted. Participants were administered a survey to assess food security, income, and general farming practices. Survey data were collected to evaluate the risk perceptions for avian influenza virus (AIV), antimicrobial resistance (AMR), and general biosecurity management implemented on these poultry farms. Overall, food security decreased for 80.1% of the tour guides during the COVID-19 pandemic. Approximately 21% of the tour guides interviewed used backyard poultry farming to supplement losses of income and food insecurity during the COVID-19 pandemic, with a significantly higher risk than for traditional poultry farmers. Agricultural intensification in Cambodia due to the COVID-19 pandemic has caused an influx of makeshift farms with limited biosecurity. Inadequate biosecurity measures in animal farms can facilitate spillover and contribute to future pandemics. Improved biosecurity and robust viral surveillance systems are critical for reducing the risk of spillover from backyard farms. IMPORTANCE While this study highlights COVID-19-associated changes in poultry production at a small scale in Cambodia, poultry production is expected to expand due to an increase in the global demand for poultry protein during the pandemic, changes in urbanization, and the reduction of the global pork supply caused by African swine fever (ASF). The global demand and surge in poultry products, combined with inadequate biosecurity methods, can lead to an increased risk of domestic animal and human spillovers of zoonotic pathogens such as avian influenza. Countries in regions of endemicity are often plagued by complex emergency situations (i.e., food insecurity and economic fallouts) that hinder efforts to effectively address the emergence (or reemergence) of zoonotic diseases. Thus, novel surveillance strategies for endemic and emerging infectious diseases require robust surveillance systems and biosecurity training programs to prevent future global pandemics.


Subject(s)
African Swine Fever , COVID-19 , Influenza in Birds , Poultry Diseases , Humans , Animals , Swine , Influenza in Birds/epidemiology , Influenza in Birds/prevention & control , Pandemics/prevention & control , Cambodia/epidemiology , Farms , Biosecurity , African Swine Fever/epidemiology , Cross-Sectional Studies , Animal Husbandry/methods , COVID-19/epidemiology , Zoonoses/epidemiology , Zoonoses/prevention & control , Poultry
7.
Lancet Microbe ; 3(11): e824-e834, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2031776

ABSTRACT

BACKGROUND: The H3N8 avian influenza virus (AIV) has been circulating in wild birds, with occasional interspecies transmission to mammals. The first human infection of H3N8 subtype occurred in Henan Province, China, in April, 2022. We aimed to investigate clinical, epidemiological, and virological data related to a second case identified soon afterwards in Hunan Province, China. METHODS: We analysed clinical, epidemiological, and virological data for a 5-year-old boy diagnosed with H3N8 AIV infection in May, 2022, during influenza-like illness surveillance in Changsha City, Hunan Province, China. H3N8 virus strains from chicken flocks from January, 2021, to April, 2022, were retrospectively investigated in China. The genomes of the viruses were sequenced for phylogenetic analysis of all the eight gene segments. We evaluated the receptor-binding properties of the H3N8 viruses by using a solid-phase binding assay. We used sequence alignment and homology-modelling methods to study the effect of specific mutations on the human receptor-binding properties. We also conducted serological surveillance to detect the H3N8 infections among poultry workers in the two provinces with H3N8 cases. FINDINGS: The clinical symptoms of the patient were mild, including fever, sore throat, chills, and a runny nose. The patient's fever subsided on the same day of hospitalisation, and these symptoms disappeared 7 days later, presenting mild influenza symptoms, with no pneumonia. An H3N8 virus was isolated from the patient's throat swab specimen. The novel H3N8 virus causing human infection was first detected in a chicken farm in Guangdong Province in December, 2021, and subsequently emerged in several provinces. Sequence analyses revealed the novel H3N8 AIVs originated from multiple reassortment events. The haemagglutinin gene could have originated from H3Ny AIVs of duck origin. The neuraminidase gene belongs to North American lineage, and might have originated in Alaska (USA) and been transferred by migratory birds along the east Asian flyway. The six internal genes had originated from G57 genotype H9N2 AIVs that were endemic in chicken flocks. Reassortment events might have occurred in domestic ducks or chickens in the Pearl River Delta area in southern China. The novel H3N8 viruses possess the ability to bind to both avian-type and human-type sialic acid receptors, which pose a threat to human health. No poultry worker in our study was positive for antibodies against the H3N8 virus. INTERPRETATION: The novel H3N8 virus that caused human infection had originated from chickens, a typical spillover. The virus is a triple reassortment strain with the Eurasian avian H3 gene, North American avian N8 gene, and dynamic internal genes of the H9N2 viruses. The virus already possesses binding ability to human-type receptors, though the risk of the H3N8 virus infection in humans was low, and the cases are rare and sporadic at present. Considering the pandemic potential, comprehensive surveillance of the H3N8 virus in poultry flocks and the environment is imperative, and poultry-to-human transmission should be closely monitored. FUNDING: National Natural Science Foundation of China, National Key Research and Development Program of China, Strategic Priority Research Program of the Chinese Academy of Sciences, Hunan Provincial Innovative Construction Special Fund: Emergency response to COVID-19 outbreak, Scientific Research Fund of Hunan Provincial Health Department, and the Hunan Provincial Health Commission Foundation.


Subject(s)
COVID-19 , Influenza A Virus, H3N8 Subtype , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Humans , Animals , Child, Preschool , Influenza in Birds/epidemiology , Influenza A Virus, H3N8 Subtype/genetics , Influenza, Human/epidemiology , Phylogeny , Retrospective Studies , Chickens , Poultry , Ducks , Mammals
9.
Trop Anim Health Prod ; 54(2): 117, 2022 Feb 27.
Article in English | MEDLINE | ID: covidwho-1767581

ABSTRACT

The aim of this study was to find the direct economic losses due to the three viral causes of the avian respiratory syndrome, including Newcastle disease (ND), H9N2 influenza, and infectious bronchitis (IB) in stamped-out broiler farms during 2016-2017 across the country. This study was carried out on the information on cross-sectional monitoring in the years 2016-2017. The statistical society of the study was all the active broiler farms of the country stamped out due to respiratory syndrome. This study used compensation insurance data, and other sources. One-way ANOVA or Kruskal-Wallis tests were used to analyze normally and non-normally distributed data. In total, during the study period, 132 broiler farms and 1,723,131 fowls were stamped out. According to the results of the present investigation, the sum of costs and losses due to respiratory complex was 9.47 $US Million, 2016-2017 (5.72 from $US Million chicken meat losses and 3.75 $US Million was the total cost). ND was the main cause of economic losses and costs with 3.86 $US equal to 40.8% of the total. Cost of feeding was the highest followed by veterinary services and medicines, vaccination, and 1-day-old chicks costs with 2.27, 1.11, 0.33, and 0.036 $US Million, 2016-2017. In conclusion, we need to improve the preventive measures against respiratory viruses, especially NDV. Additionally, as the cost of feeding was the largest, it is important to shorten the time interval between disease occurrence and stamping out to reduce the cost.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Poultry Diseases , Animals , Chickens , Cross-Sectional Studies , Farms , Financial Stress , Influenza in Birds/epidemiology , Iran/epidemiology
10.
Environ Sci Pollut Res Int ; 29(29): 44175-44185, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1669935

ABSTRACT

The spread of highly pathogenic avian influenza H5N1 has posed a major threat to global public health. Understanding the spatiotemporal outbreak characteristics and environmental factors of H5N1 outbreaks is of great significance for the establishment of effective prevention and control systems. The time and location of H5N1 outbreaks in poultry and wild birds officially confirmed by the World Organization for Animal Health from 2005 to 2019 were collected. Spatial autocorrelation analysis and multidistance spatial agglomeration analysis methods were used to analyze the global outbreak sites of H5N1. Combined with remote sensing data, the correlation between H5N1 outbreaks and environmental factors was analyzed using binary logistic regression methods. We analyzed the correlation between the H5N1 outbreak and environmental factors and finally made a risk prediction for the global H5N1 outbreaks. The results show that the peak of the H5N1 outbreaks occurs in winter and spring. H5N1 outbreaks exhibit aggregation, and a weak aggregation phenomenon is noted on the scale close to 5000 km. Water distance, road distance, railway distance, wind speed, leaf area index (LAI), and specific humidity were protective factors for the outbreak of H5N1, and the odds ratio (OR) were 0.985, 0.989, 0.995, 0.717, 0.832, and 0.935, respectively. Temperature was a risk factor with an OR of 1.073. The significance of these ORs was greater than 95%. The global risk prediction map was obtained. Given that the novel coronavirus (COVID-19) is spreading globally, the methods and results of this study can provide a reference for studying the spread of COVID-19.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Animals , Disease Outbreaks/veterinary , Influenza in Birds/epidemiology , Poultry
11.
Nature ; 600(7889): 386, 2021 12.
Article in English | MEDLINE | ID: covidwho-1565095
12.
Sci Rep ; 11(1): 23223, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1553757

ABSTRACT

Low pathogenic avian influenza viruses (LPAIVs) have been widespread in poultry and wild birds throughout the world for many decades. LPAIV infections are usually asymptomatic or cause subclinical symptoms. However, the genetic reassortment of LPAIVs may generate novel viruses with increased virulence and cross-species transmission, posing potential risks to public health. To evaluate the epidemic potential and infection landscape of LPAIVs in Guangxi Province, China, we collected and analyzed throat and cloacal swab samples from chickens, ducks and geese from the live poultry markets on a regular basis from 2016 to 2019. Among the 7,567 samples, 974 (12.87%) were LPAIVs-positive, with 890 single and 84 mixed infections. Higher yearly isolation rates were observed in 2017 and 2018. Additionally, geese had the highest isolation rate, followed by ducks and chickens. Seasonally, spring had the highest isolation rate. Subtype H3, H4, H6 and H9 viruses were detected over prolonged periods, while H1 and H11 viruses were detected transiently. The predominant subtypes in chickens, ducks and geese were H9, H3, and H6, respectively. The 84 mixed infection samples contained 22 combinations. Most mixed infections involved two subtypes, with H3 + H4 as the most common combination. Our study provides important epidemiological data regarding the isolation rates, distributions of prevalent subtypes and mixed infections of LPAIVs. These results will improve our knowledge and ability to control epidemics, guide disease management strategies and provide early awareness of newly emerged AIV reassortants with pandemic potential.


Subject(s)
Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/virology , Poultry/virology , Animals , Chickens/virology , China/epidemiology , Ducks/virology , Epidemiological Monitoring , Geese/virology , Influenza A virus/genetics
14.
Am J Trop Med Hyg ; 106(1): 127-131, 2021 10 29.
Article in English | MEDLINE | ID: covidwho-1497592

ABSTRACT

This article aims to understand the changes in the detection rates of H5, H7, and H9 subtypes of avian influenza viruses (AIVs) in the live poultry markets (LPMs) in Nanchang City, Jiangxi Province, before and after the outbreak of the COVID-19. From 2019 to 2020, we monitored the LPM and collected specimens, using real-time reverse transcription polymerase chain reaction technology to detect the nucleic acid of type A AIV in the samples. The H5, H7, and H9 subtypes of influenza viruses were further classified for positive results. We analyzed 1,959 samples before and after the outbreak and found that the positive rates of avian influenza A virus (39.69%) and H9 subtype (30.66%) after the outbreak were significantly higher than before the outbreak (26.84% and 20.90%, respectively; P < 0.001). In various LPMs, the positive rate of H9 subtypes has increased significantly (P ≤ 0.001). Positive rates of the H9 subtype in duck, fecal, daub, and sewage samples, but not chicken samples, have increased to varying degrees. This study shows that additional measures are needed to strengthen the control of AIVs now that LPMs have reopened after the relaxing of COVID-19-related restrictions.


Subject(s)
COVID-19/prevention & control , Disease Outbreaks/prevention & control , Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Animals , COVID-19/epidemiology , China/epidemiology , Ducks/virology , Environmental Microbiology , Feces/virology , Humans , Influenza A Virus, H9N2 Subtype/isolation & purification , Influenza A virus/classification , Poultry , Sewage/virology
15.
Emerg Infect Dis ; 27(10): 2742-2745, 2021 10.
Article in English | MEDLINE | ID: covidwho-1453200

ABSTRACT

In February 2021, routine sentinel surveillance for influenza-like illness in Cambodia detected a human avian influenza A(H9N2) virus infection. Investigations identified no recent H9N2 virus infections in 43 close contacts. One chicken sample from the infected child's house was positive for H9N2 virus and genetically similar to the human virus.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Animals , Birds , Cambodia/epidemiology , Chickens , Humans , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/epidemiology , Influenza, Human/epidemiology
16.
Emerg Infect Dis ; 27(10): 2619-2627, 2021 10.
Article in English | MEDLINE | ID: covidwho-1453198

ABSTRACT

The numerous global outbreaks and continuous reassortments of highly pathogenic avian influenza (HPAI) A(H5N6/H5N8) clade 2.3.4.4 viruses in birds pose a major risk to the public health. We investigated the tropism and innate host responses of 5 recent HPAI A(H5N6/H5N8) avian isolates of clades 2.3.4.4b, e, and h in human airway organoids and primary human alveolar epithelial cells. The HPAI A(H5N6/H5N8) avian isolates replicated productively but with lower competence than the influenza A(H1N1)pdm09, HPAI A(H5N1), and HPAI A(H5N6) isolates from humans in both or either models. They showed differential cellular tropism in human airway organoids; some infected all 4 major epithelial cell types: ciliated cells, club cells, goblet cells, and basal cells. Our results suggest zoonotic potential but low transmissibility of the HPAI A(H5N6/H5N8) avian isolates among humans. These viruses induced low levels of proinflammatory cytokines/chemokines, which are unlikely to contribute to the pathogenesis of severe disease.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N8 Subtype , Influenza in Birds , Influenza, Human , Animals , Birds , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/epidemiology , Risk Assessment
17.
J Med Virol ; 93(10): 5676-5679, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1432416

ABSTRACT

Over the months of April and May 2021, South Africa has witnessed several outbreaks of highly infective avian influenza (H5N1) in different poultry farms. This came as a shock to a country that was already battling with the deadly COVID-19 pandemic. The emergence of the virus has spurred import bans and massive culls in the poultry business. Local experts have also called for a restriction on the movement of people and cars in and out of their chicken farms. Employees have also been encouraged to shower in the mornings when they arrive at the farms and wear fresh clothes, as the flu spreads very quickly. In a country that is already facing the economic implications of the COVID-19, this has the potential to cause a significant dent in the economy, as well as severely impact people's day-to-day life. Bird flu-also called avian influenza-is a viral infection that can infect not only birds but also humans and other animals. The threat of a new influenza pandemic has prompted countries to draft national strategic preparedness plans to prevent, contain and mitigate the next human influenza pandemic. This paper describes the South African burden, current efforts, and preparedness against the avian influenza virus.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks/veterinary , Influenza in Birds/prevention & control , Animals , Chickens , Disease Outbreaks/prevention & control , Humans , Influenza A Virus, H5N1 Subtype , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Poultry/virology , SARS-CoV-2 , South Africa/epidemiology
18.
Front Cell Infect Microbiol ; 11: 688007, 2021.
Article in English | MEDLINE | ID: covidwho-1389153

ABSTRACT

Environmental transmission of viruses to humans has become an early warning for potential epidemic outbreaks, such as SARS-CoV-2 and influenza virus outbreaks. Recently, an H7N9 virus, A/environment/Hebei/621/2019 (H7N9), was isolated by environmental swabs from a live poultry market in Hebei, China. We found that this isolate could be transmitted by direct contact and aerosol in mammals. More importantly, after 5 passages in mice, the virus acquired two adaptive mutations, PB1-H115Q and B2-E627K, exhibiting increased virulence and aerosol transmissibility. These results suggest that this H7N9 virus might potentially be transmitted between humans through environmental or airborne routes.


Subject(s)
Environmental Exposure , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , China/epidemiology , Humans , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Mice , Poultry/virology
19.
Transbound Emerg Dis ; 69(4): e344-e355, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1379605

ABSTRACT

The current COVID-19 pandemic highlights the need for zoonotic infectious disease surveillance. Avian influenza virus (AIV) poses a significant threat to animal and public health due to its pandemic potential. Virus-contaminated water has been suggested as an important AIV spread mechanism among multiple species. Nevertheless, few studies have characterized the global AIV subtype diversity and distribution in environmental water. Therefore, this study aims to provide an updated descriptive and phylogenetic analysis of AIVs isolated in water samples from high risk-sites for influenza outbreaks (i.e. live bird markets, poultry farms, and wild bird habitats) on a global scale. The descriptive analysis evidenced that 21 subtypes were reported from nine countries between 2003 and 2020. Fourteen AIV subtypes were solely reported from Asian countries. Most of the viral sequences were obtained in China and Bangladesh with 47.44% and 23.93%, respectively. Likewise, the greatest global AIV subtype diversity was observed in China with 12 subtypes. Live bird markets represented the main sampling site for AIV detection in water samples (64.1%), mostly from poultry cage water. Nevertheless, the highest subtype diversity was observed in water samples from wild bird habitats, especially from the Izumi plain and the Dongting Lake located in Japan and China, respectively. Water from drinking poultry troughs evidenced the greatest subtype diversity in live bird markets; meanwhile, environmental water used by ducks had the highest number of different subtypes in poultry farms. Maximum-likelihood phylogenetic trees of hemagglutinin (HA) and neuraminidase (NA) genes showed that some sequences were closely related among different poultry/wild bird-related environments from different geographic origins. Therefore, the results suggest that even though the availability of gene sequences in public-access databases varies greatly among countries, environmental AIV surveillance represents a useful tool to elucidate potential viral diversity in wild and domestic bird populations.


Subject(s)
COVID-19 , Influenza A virus , Influenza in Birds , Animals , Animals, Wild , COVID-19/veterinary , Influenza in Birds/epidemiology , Pandemics , Phylogeny , Poultry , Water
20.
Front Public Health ; 9: 629295, 2021.
Article in English | MEDLINE | ID: covidwho-1376720

ABSTRACT

Background: Since the novel coronavirus disease (COVID-19) has been a worldwide pandemic, the early surveillance and public health emergency disposal are considered crucial to curb this emerging infectious disease. However, studies of COVID-19 on this topic in China are relatively few. Methods: A case-comparison study was conducted using a set of six key time nodes to form a reference framework for evaluating early surveillance and public health emergency disposal between H7N9 avian influenza (2013) in Shanghai and COVID-19 in Wuhan, China. Findings: A report to the local Center for Disease Control and Prevention, China, for the first hospitalized patient was sent after 6 and 20 days for H7N9 avian influenza and COVID-19, respectively. In contrast, the pathogen was identified faster in the case of COVID-19 than in the case of H7N9 avian influenza (12 vs. 31 days). The government response to COVID-19 was 10 days later than that to avian influenza. The entire process of early surveillance and public health emergency disposal lasted 5 days longer in COVID-19 than in H7N9 avian influenza (46 vs. 41 days). Conclusions: The identification of the unknown pathogen improved in China between the outbreaks of avian influenza and COVID-19. The longer emergency disposal period in the case of COVID-19 could be attributed to the government's slower response to the epidemic. Improving public health emergency management could lessen the adverse social effects of emerging infectious diseases and public health crisis in the future.


Subject(s)
COVID-19 , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Case-Control Studies , China/epidemiology , Humans , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Pandemics , Public Health , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL